Applications Of Derivatives Question 61

Question: The two curves $ x^{3}-3xy^{2}+2=0and3x^{2}y-y^{3}=2 $

Options:

A) Cuts at right angle

B) Touch each other

C) Cut at an angle $ \frac{\pi }{3} $

D) Cut at an angle $ \frac{\pi }{4} $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Two curves cuts at right angle if product of their slopes is -1. Two gives curves are $ x^{3}-3xy^{2}+2=0 $ - (i) and $ 3x^{2}y-y^{3}-2=0 $ - (ii) Differentiate equ. (i), $ 3x^{2}-3[ y^{2}+2xy\frac{dy}{dx} ]=0 $

$ \Rightarrow 3(x^{2}-y^{2})=6xy\frac{dy}{dx} $

$ \Rightarrow m_1=\frac{dy}{dx}=\frac{3(x^{2}-y^{2})}{6xy} $ Differentiate eq. (ii), $ 3x^{2}y-y^{3}-2=0 $

$ \Rightarrow 3[ x^{2}\frac{dy}{dx}+2xy ]-3y^{2}\frac{dy}{dx}=0 $

$ \Rightarrow x^{2}\frac{dy}{dx}+2xy-y^{2}\frac{dy}{dx}=0 $

$ \Rightarrow (x^{2}-y^{2})\frac{dy}{dx}=-2xy $

$ \Rightarrow m_2=\frac{dy}{dx}=\frac{-2xy}{(x^{2}-y^{2})} $

$ \therefore m_1\times m_2=\frac{(x^{2}-y^{2})}{2xy}\times \frac{-2xy}{(x^{2}-y^{2})} $

$ \Rightarrow m_1\times m_2=-1 $ i.e., curves cuts at right angle.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें