Applications Of Derivatives Question 63

Question: If OT is the perpendicular drawn from the origin to the tangent at any point t to the curve $ x=acos^{3}t,y=asin^{3}t $ , then OT is equal to:

Options:

A) a sin 2t

B) $ \frac{a}{2}\sin 2t $

C) 2a sin 2t

D) 2a

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{3a{{\sin }^{2}}t\cos t}{-3a{{\cos }^{2}}t\sin t}=-\tan t $

$ \therefore $ equation of the tangent at -t- is $ y-a{{\sin }^{3}}t=-\tan t(x-a{{\cos }^{3}}t) $

$ \Rightarrow x\tan t+y-a({{\sin }^{3}}t+\sin ,t.{{\cos }^{2}}t)=0 $

$ \Rightarrow x\tan t+y-a\sin t=0 $

$ \therefore $ distance from the origin to this tangent $ =\frac{| -a\sin t |}{\sqrt{{{\tan }^{2}}t+1}}=\frac{a\sin t}{\sec t}=\frac{a}{2}\sin 2t $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें