Applications Of Derivatives Question 64

Question: The difference between greatest and least value of $ f(x)=2\sin x+\sin 2x,x\in [ 0,\frac{3\pi }{2} ] $ is-

Options:

A) $ \frac{3\sqrt{3}}{2} $

B) $ \frac{3\sqrt{3}}{2}-2 $

C) $ \frac{3\sqrt{3}}{2}+2 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ f(x)=2\sin x+\sin 2x $

$ f’(x)=2\cos x+2\cos 2x=2(\cos x+cos2x) $

$ \therefore f’(x)=0\Rightarrow 2cos^{2}x+cos,x-1=0 $

$ \cos x=\frac{-1\pm 3}{4}=-1,\frac{1}{2}\therefore x=\pi ,\frac{\pi }{3} $ Now, $ f(0)=0,f( \frac{3\pi }{2} )=-2 $

$ f(\pi )=0,f( \frac{\pi }{3} )=2\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=\frac{3\sqrt{3}}{2} $

$ \therefore $ Difference between greatest value and least value $ =\frac{3\sqrt{3}}{2}+2 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें