Applications Of Derivatives Question 70

Question: If $ A>0,B>0 $ and $ A+B=\pi /3, $ then the maximum value of tan A tan B is

Options:

A) $ \frac{1}{\sqrt{3}} $

B) $ \frac{1}{3} $

C) $ 3 $

D) $ \sqrt{3} $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] We have, $ A+B=\frac{\pi }{3} $

$ \therefore B=\frac{\pi }{3}-A\Rightarrow \tan B=\frac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A} $ Let $ Z=\tan A.\tan B $ . Then, $ Z=\tan A.\frac{\sqrt{3}-\tan A}{1+\sqrt{3}\tan A}=\frac{\sqrt{3}\tan A-{{\tan }^{2}}A}{1+\sqrt{3}\tan A} $

$ \Rightarrow Z=\frac{\sqrt{3}x-x^{2}}{1+\sqrt{3}x}, $ where $ x=\tan A $

$ \Rightarrow \frac{dZ}{dx}=-\frac{(x+\sqrt{3})(\sqrt{3}x-1)}{{{(1+\sqrt{3}x)}^{2}}} $ For max $ Z,\frac{dZ}{dx}=0\Rightarrow x=\frac{1}{\sqrt{3}},-\sqrt{3} $ . $ x\ne -\sqrt{3} $ because $ A+B=\pi /3 $ which implies that $ x=\tan A>0 $ . It can be easily checked that $ \frac{d^{2}Z}{dx^{2}}<0 $ for $ x=\frac{1}{\sqrt{3}} $ .

Hence, Z is maximum for $ x=\frac{1}{\sqrt{3}}i.e.,\tan A=\frac{1}{\sqrt{3}}orA=\pi /6 $ . For this value of $ x,Z=\frac{1}{3}. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें