Applications Of Derivatives Question 72

Question: If $ f(x)=kx^{3}-9x^{2}+9x+3 $ is monotonically increasing in each interval, then

[RPET 1992; Kurukshetra CEE 2002]

Options:

A) $ k<3 $

B) $ k\le 3 $

C) $ k>3 $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ f’(x)=3kx^{2}-18x+9=3[kx^{2}-6x+3]>0,\forall x\in R $

$ \therefore \Delta =b^{2}-4ac<0,,k>0 $

$ i.e.,\ \ 36-12k<0 $ or $ k>3 $ .