Applications Of Derivatives Question 76

Question: A man is moving away from a tower 41.6m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is

Options:

A) $ -\frac{4}{125}rad/s $

B) $ -\frac{2}{25}rad/s $

C) $ -\frac{1}{625}rad/s $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] Let CD be the position of man at any time t. Let BD be x. Then $ EC=x $ . Let $ \angle ACE $ be $ \theta $ . Given $ AB=41.6m,CD=1.6m, $ and $ \frac{dx}{dt}=2,m/s $ . $ AE=AB-EB=AB-CD=41.6-1.6=40,m $ We have to find $ \frac{d\theta }{dt} $ where $ x=30,m $ . From $ \Delta AEC,\tan \theta =\frac{AE}{EC}=\frac{40}{x} $ Differentiating w.r.t. to t, $ {{\sec }^{2}}\theta \frac{d\theta }{dt}=\frac{-40}{x^{2}}\frac{dx}{dt} $ or $ {{\sec }^{2}}\theta \frac{d\theta }{dt}=\frac{-40}{x^{2}}\times 2 $ or $ \frac{d\theta }{dt}=\frac{-80}{x^{2}}{{\cos }^{2}}\theta =-\frac{80}{x^{2}}\frac{x^{2}}{x^{2}+40^{2}} $

$ =-\frac{80}{x^{2}+40^{2}} $ . When $ x=30m,\frac{d\theta }{dt}=-\frac{80}{30^{2}+40^{2}}=-\frac{4}{125}rad/s $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें