Applications Of Derivatives Question 79

Question: For which interval the given function $ f(x)=-2x^{3}-9x^{2}-12x+1 $ is decreasing

[MP PET 1993]

Options:

A) $ (-2,,\infty ) $

B) $ (-2,,-1) $

C) $ (-\infty ,,-1) $

D) $ (-\infty ,-2) $ and $ (-1,,\infty ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ f(x)=-2x^{3}-9x^{2}-12x+1 $

therefore $ f’(x)=-6x^{2}-18x-12 $ To be decreasing $ f’(x)<0 $ , i.e., $ -6x^{2}-18x-12<0 $

therefore $ x^{2}+3x+2>0 $

therefore $ (x+2)(x+1)>0 $

Therefore either $ x<-2 $ or $ x>-1 $

therefore $ x\in (-1,\infty ) $ or $ (-\infty ,-2) $ .