Applications Of Derivatives Question 82

Question: If the volume of a spherical balloon is increasing at the rate of 900cm3per sec, then the rate of change of radius of balloon at instant when radius is 15cm

[in cm/sec] [RPET 1996]

Options:

A) $ \frac{22}{7} $

B) 22

C) $ \frac{7}{22} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ V=\frac{4}{3}\pi r^{3} $ Differentiate with respect to t, $ \frac{dV}{dt}=\frac{4}{3}\pi 3r^{2}.\frac{dr}{dt} $

therefore $ \frac{dr}{dt}=\frac{1}{4\pi r^{2}}.\frac{dV}{dt} $

$ \frac{dr}{dt}=\frac{1}{4\times \pi \times 15\times 15}\times 900 $

$ \Rightarrow $ $ \frac{dr}{dt}=\frac{1}{\pi }=\frac{7}{22} $ .