Applications Of Derivatives Question 83

Question: The area of a rectangle will be maximum for the given perimeter, when rectangle is a

[AI CBSE 1991; RPET 1999]

Options:

A) Parallelogram

B) Trapezium

C) Square

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

We know that perimeter of a rectangle $ S=2(x+y) $ , where x and y are adjacent sides

therefore $ y=\frac{S-2x}{2} $ .

Now area of rectangle, $ A=xy=\frac{x}{2}(S-2x)=\frac{1}{2}(Sx-2x^{2}) $

Differentiating w.r.t. x of A, we get $ \frac{dA}{dx}=\frac{1}{2}(S-4x)=0,\therefore x=\frac{S}{4} $ and $ y=\frac{S}{4} $

Again $ \frac{d^{2}A}{dx^{2}}=-ve $

Hence the area of rectangle will be maximum when rectangle is a square.