Applications Of Derivatives Question 84

Question: The minimum value of the function $ 2\cos 2x-\cos 4x $ in $ 0\le x\le \pi $ is

Options:

A) 0

B) 1

C) $ \frac{3}{2} $

D) - 3

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=2\cos 2x-\cos 4x $

$ =2\cos 2x(1-\cos 2x)+1=4\cos 2x{{\sin }^{2}}x+1 $ Obviously, $ {{\sin }^{2}}x\ge 0 $ Therefore to be least value of y, $ \cos 2x $ should be least i.e., $ -1 $ .

Hence least value of y is $ -,4+1=-3 $ .