Applications Of Derivatives Question 86

Question: In which interval is the given function $ f(x)=2x^{3}-15x^{2}+36x+1 $ is monotonically decreasing

[RPET 1995]

Options:

A) [2, 3]

B) (2, 3)

C) $ (-\infty ,,2) $

D) $ (3,,\infty ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=f(x)=2x^{3}-15x^{2}+36x+1 $

$ \frac{dy}{dx}=f’(x)=6x^{2}-30x+36=6(x^{2}-5x+6) $

$ f’(x)=6(x-2)(x-3) $ To be monotonic decreasing, $ f’(x)<0 $

$ \Rightarrow (x-2)(x-3)<0\Rightarrow x\in (2,3) $ .