Applications Of Derivatives Question 91

Question: The equation of normal to the curve $ y={{(1+x)}^{y}}+{{\sin }^{-1}}({{\sin }^{2}}x) $ at $ x=0 $ is

Options:

A) $ x+y=1 $

B) $ x-y=1 $

C) $ x+y=-1 $

D) $ x-y=-1 $

Show Answer

Answer:

Correct Answer: A

Solution:

[a] At $ x=0,,y=1 $ .

Hence, the point at which normal is drawn is $ P(0,1) $ . Differentiating the given equation w.r.t. x, we have $ {{(1+x)}^{y}}{ \log (1+x)\frac{dy}{dx}+\frac{y}{1+x} } $

$ -\frac{dy}{dx}+\frac{1}{\sqrt{1-{{\sin }^{4}}x}}2\sin x\cos x=0 $ or $ {{( \frac{dy}{dx} )}_{(0,1)}}=\frac{{{(1+0)}^{1}}\times \frac{1}{1+0}-\frac{2\sin 0}{\sqrt{1-{{\sin }^{2}}0}}}{1-{{(1+0)}^{1}}\log 1}=1 $ .
$ \therefore $ Slope of the normal $ =-1 $ . Therefore, equation of the normal having slope $ -1 $ at point $ P(0,1) $ is given by $ y-1=-(x-0) $ or $ x+y=1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें