Applications Of Derivatives Question 96

Question: If $ f(x)=2x^{3}-21x^{2}+36x-30 $ , then which one of the following is correct

Options:

A) $ f(x) $ has minimum at $ x=1 $

B) $ f(x) $ has maximum at $ x=6 $

C) $ f(x) $ has maximum at $ x=1 $

D) $ f(x) $ has no maxima or minima

Show Answer

Answer:

Correct Answer: C

Solution:

$ f(x)=2x^{3}-21x^{2}+36x-30\Rightarrow f’(x)=6x^{2}-42x+36 $

$ \therefore f’(x)=0\Rightarrow x=6,\ 1 $ and $ {f}’’,(x)=12x-42 $ Here $ {f}’’,(1)=-30 $ and $ {f}’’,(6)=30 $

Hence $ f(x) $ has maxima at $ x=1 $ and minima at $ x=6 $ .