Binomial Theorem And Its Simple Applications Question 10

Question: If $ x={{( 2+\sqrt{3} )}^{n}} $ , then find the value of $ x,( 1-{ x } ) $ where {x} denotes the fractional part of x

Options:

A) 1

B) 2

C) $ 2^{2n} $

D) $ 2^{n} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ x={{( 2+\sqrt{3} )}^{n}} $

$ ={{,}^{n}}C_02^{n}+{{,}^{n}}C_1{2^{n-1}}\sqrt{3}+{{,}^{n}}C_2{2^{n-1}}{{( \sqrt{3} )}^{2}}+… $
Let $ x_1={{( 2-\sqrt{3} )}^{n}} $

$ ={{,}^{n}}C_02^{n}-{{,}^{n}}C_1{2^{n-1}}\sqrt{3}+{{,}^{n}}C_2{2^{n-2}}{{( \sqrt{3} )}^{2}}+… $

$ x+x_1=2( ^{n}C_02^{n}+{{,}^{n}}C_2{2^{n-2}}{{( \sqrt{3} )}^{2}}+… ) $
= Even integer. Clearly, $ x,\in (0,1)\forall n\in N $

$ \Rightarrow [x]+{x}+x_1= $ Even integer

$ \Rightarrow {x}+x_1=Integer{x}\in (0,1),x_1\in (0,1) $

$ \Rightarrow {x}+x_1\in (0,2) $

$ \Rightarrow {x}+x_1=1\Rightarrow x_1=1-{x} $

$ \Rightarrow x(1-{x})=x.x_1={{( 2+\sqrt{3} )}^{n}}{{( 2-\sqrt{3} )}^{n}}=1 $