Binomial Theorem And Its Simple Applications Question 102

Question: In the expansion of $ {{(x+a)}^{n}} $ , the sum of odd terms is P and sum of even terms is Q, then the value of $ (P^{2}-Q^{2}) $ will be

[RPET 1997; Pb. CET 1998]

Options:

A) $ {{(x^{2}+a^{2})}^{n}} $

B) $ {{(x^{2}-a^{2})}^{n}} $

C) $ {{(x-a)}^{2n}} $

D) $ {{(x+a)}^{2n}} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ {{(x+a)}^{n}}=x^{n}+{{,}^{n}}C_1{x^{n-1}}a{{+}^{{}}} $ ….. $ =(x^{n}+{{,}^{n}}C_2{x^{n-2}}a^{2}+……. $ + $ {{(}^{n}}C_1{x^{n-1}}a+{{,}^{n}}C_3{x^{n-3}}a^{3}+…..) $ = $ P+Q $

$ \therefore $ $ {{(x-a)}^{n}}=P-Q, $ As the terms are alter. +ve and -ve
$ \therefore $ $ P^{2}-Q^{2}=(P+Q)(P-Q)={{(x+a)}^{n}}{{(x-a)}^{n}} $

$ P^{2}-Q^{2}={{(x^{2}-a^{2})}^{n}} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें