Binomial Theorem And Its Simple Applications Question 117

Question: The coefficient of $ x^{83} $ in $ {{(1+x+x^{2}+x^{3}+x^{4})}^{n}} $ $ {{(1-x)}^{n+3}},is-{{,}^{n}}{C_{2\lambda }} $ , then find the value of $ \lambda $

Options:

A) 12

B) 10

C) 9

D) 8

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] We have, $ {{( 1+x+x^{2}+x^{3}+x^{4} )}^{n}}{{(x-1)}^{n+3}} $

$ =\frac{{{(x^{5}-1)}^{n}}}{{{(1-x)}^{n}}}.{{(x-1)}^{n+3}}={{(x^{5}-1)}^{n}}{{(x-1)}^{3}} $

$ =( +x^{3}-3x^{2}+3x-1 )\sum\limits_{r=0}^{n}{^{n}C_{r}{{(-1)}^{r}},x^{5r}} $

$ =+\sum\limits_{r=0}^{n}{{{,}^{n}}C_{r}{{(-1)}^{r}}{x^{5r+3}}+3\sum\limits_{r=0}^{n}{{{,}^{n}}C_{r}{{(-1)}^{r}},{x^{5r+2}}}} $

$ -3\sum\limits_{r=0}^{n}{{{,}^{n}}C_{r}{{(-1)}^{r}},{x^{5r+1}}+3\sum\limits_{r=0}^{n}{{{,}^{n}}C_{r}}{{(-1)}^{r}}x^{5r}} $
For term containing $ x^{83}, $ we have $ 5r+3=83 $

$ \Rightarrow r=16 $ whereas $ 5r+2=83,5r+1=83 $ and $ 5r=83 $ give no integral value of r.

Hence, there is only one term containing $ x^{83} $ whose coefficient $ =-{{,}^{n}}C_{16}=-{{,}^{n}}{C_{2\lambda }},\therefore 2\lambda =16\Rightarrow \lambda =8 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें