Binomial Theorem And Its Simple Applications Question 118

Question: $ \frac{1}{1!(n-1),!}+\frac{1}{3!(n-3)!}+\frac{1}{5!(n-5)!}+….= $

[AMU 2005]

Options:

A) $ \frac{2^{n}}{n!} $ ; for all even values of n

B) $ \frac{{2^{n-1}}}{n!} $ ; for all values of n i.e., all even odd values

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • Multiplying each term by n! the question reduces to $ \frac{n!}{1!(n-1)!}+\frac{1}{3!}.\frac{n!}{(n-3),!}+\frac{1}{5!}.\frac{n!}{(n-5)!}+…. $

$ ={{,}^{n}}C_1+{{,}^{n}}C_3+{{,}^{n}}C_5+….={2^{n-1}} $ . Thus $ \frac{1}{1!(n-1)!}+\frac{1}{3!(n-3)!}+\frac{1}{5!(n-5)!}+…. $

$ =\frac{1}{n!}{2^{n-1}} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें