Binomial Theorem And Its Simple Applications Question 12

Question: In the binomial expansion $ {{(a+bx)}^{-3}} $ $ =\frac{1}{8}+\frac{9}{8}x+…. $ , then the value of a and b are:

Options:

A) a = 2, b = 3

B) a = 2, b = -6

C) a = 3, b = 2

D) a = -3, b = 2

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Given expansion is $ {{(a+bx)}^{-3}} $ which can be written as $ {{[ a( 1+\frac{b}{a}x ) ]}^{-3}}={a^{-3}}{{( 1+\frac{b}{a}x )}^{-3}} $

$ ={a^{-3}}( 1-\frac{3b}{a}x+6{{( \frac{b}{a}x )}^{2}}-…… ) $

$ (Byusing{{(1+x)}^{-3}}=1-3x+6x^{2}-………) $
But given that: $ {{(a+bx)}^{-3}}=\frac{1}{8}+\frac{9}{8}x+……. $

$ \therefore {a^{-3}}[ 1-\frac{3b}{a}x+6\frac{b^{2}}{a^{2}}.x^{2}-…. ]=\frac{1}{8}+\frac{9}{8}x+…. $

$ \Rightarrow ,{a^{-3}}=\frac{1}{8}={2^{-3}}\Rightarrow a=2 $
and $ -3b{a^{-4}}={{9.2}^{-3}}\Rightarrow b=-6 $