Binomial Theorem And Its Simple Applications Question 122

Question: The coefficient of $ x^{5} $ in the expansion of $ {{(x^{2}-x-2)}^{5}} $ is

Options:

A) -83

B) -82

C) -86

D) -81

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ {{(x-2)}^{5}}{{(x+1)}^{5}} $

$ ={{[}^{5}}C_0{x^{5-5}}C_1x^{4}\times 2+…] $

$ {{[}^{5}}C_0{{+}^{5}}C_1x+…] $

$ \Rightarrow $ Coefficient of $ x^{5} $

$ {{=}^{5}}C_0^{5}C_5{{-}^{5}}C_1\times 2{{\times }^{5}}C_4{{+}^{5}}C_2\times 2^{2}{{\times }^{5}}C_3{{-}^{5}}C_3\times 2^{3}{{\times }^{5}}C_2 $

$ {{+}^{5}}C_4\times 2^{4}{{\times }^{5}}C_1{{-}^{5}}C_5\times 2^{5}{{\times }^{5}}C_0 $

$ =1-5\times 5\times 2+10\times 10\times 4-10\times 10\times 8+5\times 5\times 16-32 $

$ =-81 $