Binomial Theorem And Its Simple Applications Question 125

Question: The coefficient of $ x^{10} $ in the expansion of $ {{(1+x^{2}-x^{3})}^{8}} $ is

Options:

A) 476

B) 496

C) 506

D) 528

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] We rewrite the given expression as $ {{[1+x^{2}(1-x)]}^{8}} $ and expand by using the binomial theorem. We have, $ {{[1+x^{2}(1-x)]}^{8}}{{=}^{8}}C_0{{+}^{8}}C_1x^{2}(1-x){{+}^{8}}C_2x^{4}{{(1-x)}^{2}} $

$ {{+}^{8}}C_3x^{6}{{(1-x)}^{3}}{{+}^{8}}C_4x^{8}{{(1-x)}^{4}} $

$ {{+}^{8}}C_5x^{10}{{(1-x)}^{5}}+… $

The two terms which contain $ x^{10} $ are $ ^{8}C_4 $

$ x^{8}{{(1-x)}^{8}} $ and $ ^{8}C_5x^{10}{{(1-x)}^{5}} $ .

Thus, the coefficient of $ x^{10} $ in the given expression is given by $ ^{8}C_4 $ [Coefficient of $ x^{2} $ in the expansion of $ {{(1-x)}^{4}}+{{[}^{8}}C_5 $

$ {{=}^{8}}C_4(6){{+}^{8}}C_5=\frac{8!}{4!4!}(6)+\frac{8!}{3!5!} $

$ =(70)(6)+56=476 $