Binomial Theorem And Its Simple Applications Question 125

Question: The coefficient of $ x^{10} $ in the expansion of $ {{(1+x^{2}-x^{3})}^{8}} $ is

Options:

A) 476

B) 496

C) 506

D) 528

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] We rewrite the given expression as $ {{[1+x^{2}(1-x)]}^{8}} $ and expand by using the binomial theorem. We have, $ {{[1+x^{2}(1-x)]}^{8}}{{=}^{8}}C_0{{+}^{8}}C_1x^{2}(1-x){{+}^{8}}C_2x^{4}{{(1-x)}^{2}} $

$ {{+}^{8}}C_3x^{6}{{(1-x)}^{3}}{{+}^{8}}C_4x^{8}{{(1-x)}^{4}} $

$ {{+}^{8}}C_5x^{10}{{(1-x)}^{5}}+… $

The two terms which contain $ x^{10} $ are $ ^{8}C_4 $

$ x^{8}{{(1-x)}^{8}} $ and $ ^{8}C_5x^{10}{{(1-x)}^{5}} $ .

Thus, the coefficient of $ x^{10} $ in the given expression is given by $ ^{8}C_4 $ [Coefficient of $ x^{2} $ in the expansion of $ {{(1-x)}^{4}}+{{[}^{8}}C_5 $

$ {{=}^{8}}C_4(6){{+}^{8}}C_5=\frac{8!}{4!4!}(6)+\frac{8!}{3!5!} $

$ =(70)(6)+56=476 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें