Binomial Theorem And Its Simple Applications Question 126
Question: If coefficient of $ a^{2}b^{3}c^{4} $ in $ {{(a+b+c)}^{m}} $ (where m $ \in $ N) is L (L $ \ne $ 0), then in same expansion coefficient of $ a^{4}b^{4}c^{1} $ will be
Options:
A) L
B) $ \frac{L}{3} $
C) $ \frac{mL}{4} $
D) $ \frac{L}{2} $
Show Answer
Answer:
Correct Answer: D
Solution:
- [d] As $ L\ne 0 $
$ \therefore m=2+3+4=9 $
$ \therefore L=\frac{9!}{2!3!4!} $
Now coefficient of $ a^{4}b^{4}c=\frac{9!}{4!4!1!}=\frac{L}{2} $