Binomial Theorem And Its Simple Applications Question 13

Question: The value of $ \sum\limits_{r=0}^{50}{{{(-1)}^{r}}} $ $ \frac{^{50}C_{r}}{r+2} $ is equal to

Options:

A) $ \frac{1}{50\times 51} $

B) $ \frac{1}{52\times 50} $

C) $ \frac{1}{52\times 51} $

D) none of these

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Here, $ T_{r}={{(-1)}^{r}}\frac{^{50}C_{r}}{r+2} $

$ ={{(-1)}^{r}}(r+1)\frac{^{50}C_{r}}{(r+1)(r+2)} $

$ ={{(-1)}^{r}}(r+1)\frac{^{52}{C_{r+2}}}{51\times 52} $

$ ={{(-1)}^{r}}\frac{{{[(r+2)-1]}^{52}}{C_{r+2}}}{51\times 52} $

$ ={{(-1)}^{r}}\frac{[52^{51}{C_{r+1}}{{-}^{52}}{C_{r+2}}]}{51\times 52} $

$ =\frac{[-52^{51}{C_{r+1}}{{(-1)}^{r+1}}{{-}^{52}}{C_{r+2}}{{(-1)}^{r+2}}]}{51\times 52} $

$ \sum\limits_{r=0}^{50}{{{(-1)}^{r}}}\frac{^{50}C_{r}}{r+2} $

$ =\sum\limits_{r=0}^{50}{\frac{[-52^{51}{C_{r+1}}{{(-1)}^{r+1}}{{-}^{52}}{C_{r+2}}{{(-1)}^{r+2}}]}{51\times 52}} $

$ =-52\frac{{{(1-1)}^{51}}{{-}^{51}}C_0}{51\times 52}-\frac{{{(1-1)}^{52}}{{-}^{52}}C_0{{+}^{52}}C_1}{51\times 52} $

$ =\frac{1}{51}-\frac{1}{52}=\frac{1}{51\times 52} $ Alternate solution: $ {{(1-x)}^{n}}=\sum\limits_{r=0}^{n}{^{n}C_{r}{{(-1)}^{r}}x^{r}} $ or $ x{{(1-x)}^{n}}=\sum\limits_{r=0}^{n}{{{(-1)}^{r}}{{,}^{n}}}C_{r}{x^{r+1}} $ integrating both sides within the limits 0 to 1, we get $ \int\limits_0^{1}{x{{(1-x)}^{n}}dx}=\sum\limits_{r=0}^{n}{{{(-1)}^{r}}\frac{^{n}C_{r}}{r+2}} $ Or $ \sum\limits_{r=0}^{n}{{{(-1)}^{r}}\frac{^{n}C_{r}}{r+2}=\int\limits_0^{1}{x{{(1-x)}^{n}}dx}} $

$ =\int\limits_0^{1}{(1-x)x^{n}dx} $ (Replace x by 1-x) $ =\frac{{x^{n+1}}}{n+1}-{{. \frac{{x^{n+2}}}{n+2} |}_0}^{1} $

$ =\frac{1}{n+1}-\frac{1}{n+2} $

$ =\frac{1}{(n+1)(n+2)} $ Now put n=50.

$ =\frac{1}{(50)(52)} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें