Binomial Theorem And Its Simple Applications Question 143

Question: $ ^{n}C_0-\frac{1}{2}{{,}^{n}}C_1+\frac{1}{3}{{,}^{n}}C_2-……+{{(-1)} ^{n}}\frac{^{n}C_{n}}{n+1}= $

Options:

A) n

B) 1/n

C) $ \frac{1}{n+1} $

D) $ \frac{1}{n-1} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • Trick: Put $ n= $ 1, 2

At $ n=1,{{,}^{1}}C_0-\frac{1}{2}{{,}^{1}}C_1=1-\frac{1}{2}=\frac{1}{2} $

At $ n=2,,{{,}^{2}}C_0-\frac{1}{2},{{,}^{2}}C_1+\frac{1}{3}{{,}^{2}}C_2=1-1+\frac{1}{3}=\frac{1}{3} $ which is given by option C.