Binomial Theorem And Its Simple Applications Question 150

Question: If $ C_0,C_1,,C_2{{,}^{.}}…….,C_{15} $ are binomial coefficients in $ {{(1+x)}^{15}} $ , then $ \frac{C_1}{C_0}+2\frac{C_2}{C_1}+3\frac{C_3}{C_2}+….+15\frac{C_{15}}{C_{14}}= $

Options:

A) 60

B) 120

C) 64

D) 124

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] General term of the given series is $ r\frac{^{n}C_{r}}{^{n}{C_{r-1}}}=n+1-r $ By taking summation over n, we get $ \sum\limits_1^{15}{r\frac{^{n}C_{r}}{^{n}{C_{r-1}}}=\sum\limits_{n=1}^{15}{(n+1-r)=\sum\limits_1^{15}{(16-r)}}} $

$ =16\times 15-\frac{1}{2}\cdot 15\times 16 $ By using sum of n natural numbers $ =\frac{n(n+1)}{2} $

$ =240-120=120 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें