Binomial Theorem And Its Simple Applications Question 150

Question: If $ C_0,C_1,,C_2{{,}^{.}}…….,C_{15} $ are binomial coefficients in $ {{(1+x)}^{15}} $ , then $ \frac{C_1}{C_0}+2\frac{C_2}{C_1}+3\frac{C_3}{C_2}+….+15\frac{C_{15}}{C_{14}}= $

Options:

A) 60

B) 120

C) 64

D) 124

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] General term of the given series is $ r\frac{^{n}C_{r}}{^{n}{C_{r-1}}}=n+1-r $ By taking summation over n, we get $ \sum\limits_1^{15}{r\frac{^{n}C_{r}}{^{n}{C_{r-1}}}=\sum\limits_{n=1}^{15}{(n+1-r)=\sum\limits_1^{15}{(16-r)}}} $

$ =16\times 15-\frac{1}{2}\cdot 15\times 16 $ By using sum of n natural numbers $ =\frac{n(n+1)}{2} $

$ =240-120=120 $