Binomial Theorem And Its Simple Applications Question 153

Question: If the coefficient of $ x^{7} $ in $ {{( ax^{2}+\frac{1}{bx} )}^{11}} $ is equal to the coefficient of $ {x^{-7}} $ in $ {{( ax-\frac{1}{bx^{2}} )}^{11}} $ , then ab =

[MP PET 1999; AMU 2001; Pb. CET 2002; AIEEE 2005]

Options:

A) 1

B) 1/2

C) 2

D) 3

Show Answer

Answer:

Correct Answer: A

Solution:

  • In the expansion of $ {{( ax^{2}+\frac{1}{bx} )}^{11}} $ , the general term is $ {T_{r+1}}={{,}^{11}}C_{r}{{(ax^{2})}^{11-r}}{{( \frac{1}{bx} )}^{r}}={{,}^{,11}}C_{r}{a^{11-r}}\frac{1}{b^{r}}{x^{22-3r}} $

For x7, we must have 22 - 3r = 7

therefore r = 5, and the coefficient of x7 = $ ^{11}C_5.{a^{11-5}}\frac{1}{b^{5}}={{,}^{11}}C_5\frac{a^{6}}{b^{5}} $

Similarly, in the expansion of $ {{( ax-\frac{1}{bx^{2}} )}^{11}}, $ the general term is $ {T_{r+1}}={{,}^{11}}C_{r}{{(-1)}^{r}}\frac{{a^{11-r}}}{b^{r}}.{x^{11-3r}} $

For x-7 we must have, 11 - 3r = -7

therefore r = 6, and the coefficient of $ {x^{-7}} $ is $ ^{11}C_6\frac{a^{5}}{b^{6}}={{,}^{11}}C_5\frac{a^{5}}{b^{6}} $ .

As given, $ ^{11}C_5\frac{a^{6}}{b^{5}}={{,}^{11}}C_5\frac{a^{5}}{b^{6}}\Rightarrow ab=1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें