Binomial Theorem And Its Simple Applications Question 155

Question: If $ {{(1+ax)}^{n}}=1+8x+24x^{2}+…., $ then the value of a and n is

[IIT 1983; Pb. CET 1994, 99]

Options:

A) 2, 4

B) 2, 3

C) 3, 6

D) 1, 2

Show Answer

Answer:

Correct Answer: A

Solution:

  • As given $ {{(1+ax)}^{n}}=1+8x+24x^{2}+…. $

therefore $ 1+\frac{n}{1}ax+\frac{n(n-1)}{1.2}a^{2}x^{2}+….=1+8x+24x^{2}+…. $

$ \Rightarrow na=8,\frac{n(n-1)}{1.2}a^{2}=24\Rightarrow na(n-1)a=48 $

therefore $ 8(8-a)=48 $

therefore $ 8-a=6\Rightarrow a=2\Rightarrow n=4 $ .