Binomial Theorem And Its Simple Applications Question 17

Question: $ 1+\frac{1}{3}+\frac{1}{3}.\frac{3}{6}+\frac{1}{3}.\frac{3}{6}.\frac{5}{9}+…..\infty = $

Options:

A) $ \sqrt{\frac{2}{3}} $

B) $ \sqrt{2} $

C) $ \sqrt{3} $

D) $ \sqrt{\frac{3}{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let the given series be the expansion of $ {{(1+x)}^{n}} $ , then it is identical with $ 1+nx+\frac{n(n-1)}{2!}.x^{2}+….. $

$ \therefore nx=\frac{1}{3}…(1) $

$ \frac{n(n-1)}{2}.x^{2}=\frac{1}{6}…(2) $

Solving the equations (1) and (2) we get $ n=-\frac{1}{2} $ and $ x=-\frac{2}{3} $

$ \therefore $ The given series $ ={{( 1-\frac{2}{3} )}^{-\frac{1}{2}}}={{( \frac{1}{3} )}^{-\frac{1}{2}}}=\sqrt{3} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें