Binomial Theorem And Its Simple Applications Question 17

Question: $ 1+\frac{1}{3}+\frac{1}{3}.\frac{3}{6}+\frac{1}{3}.\frac{3}{6}.\frac{5}{9}+…..\infty = $

Options:

A) $ \sqrt{\frac{2}{3}} $

B) $ \sqrt{2} $

C) $ \sqrt{3} $

D) $ \sqrt{\frac{3}{2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let the given series be the expansion of $ {{(1+x)}^{n}} $ , then it is identical with $ 1+nx+\frac{n(n-1)}{2!}.x^{2}+….. $

$ \therefore nx=\frac{1}{3}…(1) $

$ \frac{n(n-1)}{2}.x^{2}=\frac{1}{6}…(2) $

Solving the equations (1) and (2) we get $ n=-\frac{1}{2} $ and $ x=-\frac{2}{3} $

$ \therefore $ The given series $ ={{( 1-\frac{2}{3} )}^{-\frac{1}{2}}}={{( \frac{1}{3} )}^{-\frac{1}{2}}}=\sqrt{3} $