Binomial Theorem And Its Simple Applications Question 170

Question: The fractional part of $ 2^{4n}/15 $ is $ (n\in N) $

Options:

A) $ \frac{1}{15} $

B) $ \frac{2}{15} $

C) $ \frac{4}{15} $

D) none of these

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ {{( \frac{1}{x} )}^{r}}{{=}^{m}}C_{r}{x^{2m-3r}}=\frac{{{(15+1)}^{n}}}{15} $

$ =\frac{{{(}^{n}}C_015^{n}{{+}^{n}}C_1{15^{n-1}}+…{{+}^{n}}{C_{n-1}}15{{+}^{n}}C_{n})}{15} $ = integer $ +\frac{1}{15} $

Hence, the fractional part of $ \frac{2^{4n}}{15} $ is $ \frac{1}{15} $