Binomial Theorem And Its Simple Applications Question 174

Question: If $ {{(1+x)}^{n}}=C_0+C_1x+C_2x^{2}+….+C_{n}x^{n} $ , then $ C_0C_2+C_1C_3+C_2C_4+{C_{n-2}}C_{n} $ equals

[RPET 1996]

Options:

A) $ \frac{(2n)!}{(n+1)!(n+2)!} $

B) $ \frac{(2n)!}{(n-2)!(n+2)!} $

C) $ \frac{(2n)!}{(n)!(n+2)!} $

D) $ \frac{(2n)!}{(n-1)!(n+2)!} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • We have, $ {{(1+x)}^{n}}=C_0+C_1x+C_2x^{2}….+C_{n}x^{n} $

$ {{( 1+\frac{1}{x} )}^{n}}=C_0+C_1.\frac{1}{x}+C_2.\frac{1}{x^{2}}+…+C_{n}( \frac{1}{x^{n}} ) $

on multiplying both expansions, we get $ \frac{{{(1+x)}^{2n}}}{x^{n}}=\sum{C_0^{2}+x\sum{C_0C_1+x^{2}\sum{C_1C_2+….}}} $

$ +x^{r}\sum{C_0C_{r}+\cdots} $

The various sigma are the coefficient of $ x^{0},x,x^{2},…..,x^{r} $ in L.H.S. $ \frac{{{(1+x)}^{2n}}}{x^{n}} $ or coefficient of $ x^{n},{x^{n+1}},{x^{n+2}},…..,{x^{n+r}} $ in the expansion of $ {{(1+x)}^{2n}} $ which occur in $ {T_{n+1}},{T_{n+2}},…. $ and are $ ^{2n}C_{n}{{,}^{2n}}{C_{n+1}}{{,}^{2n}}{C_{n+2}}{{….}^{2n}}{C_{n+r}} $ etc. $ ^{,2n}{C_{n+2}}=\frac{(2n)!}{(n-2)!,(n+2)!} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें