Binomial Theorem And Its Simple Applications Question 182

Question: The value of $ C \begin{matrix} 30 \\ 0 \\ \end{matrix} C \begin{matrix} 30 \\ 10 \\ \end{matrix} -C \begin{matrix} 30 \\ 1 \\ \end{matrix} C \begin{matrix} 30 \\ 11 \\ \end{matrix} +C \begin{matrix} 30 \\ 2 \\ \end{matrix} C \begin{matrix} 30 \\ 12 \\ \end{matrix} +……+C \begin{matrix} 30 \\ 20 \\ \end{matrix} C \begin{matrix} 30 \\ 30 \\ \end{matrix} $

[IIT Screening 2005]

Options:

A) $ ^{60}C_{20} $

B) $ ^{30}C_{10} $

C) $ ^{60}C_{30} $

D) $ ^{40}C_{30} $

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ {{(1-x)}^{30}}={{,}^{30}}C_0x^{0}-{{,}^{30}}C_1x^{1}+{{,}^{30}}C_2x^{2} $

$ +……+{{(-1)}^{30}}{{\ }^{30}}C_{30}x^{30} $ ….(i) $ {{(x+1)}^{30}}={{,}^{30}}C_0x^{30}+{{,}^{30}}C_1x^{29}+{{,}^{30}}C_2x^{28} $

$ +……+{{,}^{30}}C_{10}x^{20}+….+{{,}^{30}}C_{30}x^{0} $ ….(ii)

Multiplying (i) and (ii) and equating the coefficient of x20 on both sides,

we get required sum = coefficient of $x^{20}$ in $(1 - x^2)^{30}=^{30}C_{10}$.