Binomial Theorem And Its Simple Applications Question 191

Question: If $ S_{n}=\sum\limits_{r=0}^{n}{\frac{1}{^{n}C_{r}}} $ and $ t_{n}=\sum\limits_{r=0}^{n}{\frac{r}{^{n}C_{r}}} $ , then $ \frac{t_{n}}{S_{n}} $ is equal to

[AIEEE 2004]

Options:

A) $ \frac{2n-1}{2} $

B) $ \frac{1}{2}n-1 $

C) $ n-1 $

D) $ \frac{1}{2}n $

Show Answer

Answer:

Correct Answer: D

Solution:

  • We have, $ S_{n}=\sum\limits_{r=0}^{n}{\frac{1}{^{n}C_{r}}} $ and $ t_{n}=\sum\limits_{r=0}^{n}{\frac{r}{^{n}C_{r}}} $

$ t_{n}=\sum\limits_{r=0}^{n}{\frac{n-(n-r)}{^{n}{C_{n-r}}}} $ , $ [\because ,{{,}^{n}}C_{r}={{,}^{n}}{C_{n-r}}] $ = $ n\sum\limits_{r=0}^{n}{\frac{1}{^{n}C_{r}}}-\sum\limits_{r=0}^{n}{\frac{n-r}{^{n}{C_{n-r}}}} $

$ t_{n}=n,.,S_{n}-[ \frac{n}{^{n}C_{n}}+\frac{n-1}{^{n}{C_{n-1}}}+…..+\frac{1}{^{n}C_1}+0 ] $

$ t_{n}=n,.,S_{n}-\sum\limits_{r=0}^{n}{\frac{r}{^{n}C_{r}}} $

$ \Rightarrow $ $ t_{n}=n,.,S_{n}-t_{n} $

$ \Rightarrow $ $ 2t_{n}={{,}^{n}}S_{n}\Rightarrow \frac{t_{n}}{S_{n}}=\frac{n}{2} $ .