Binomial Theorem And Its Simple Applications Question 193

Question: The value of $ \sum\limits_{n=1}^{\infty }{\frac{^{n}C_0+…{{+}^{n}}C_{n}}{^{n}P_{n}}} $ is

[Kerala (Engg.) 2005]

Options:

A) $ e^{2} $

B) e

C) $ e^{2}-1 $

D) $ e-1 $

Show Answer

Answer:

Correct Answer: C

Solution:

  • $ \sum\limits_{n=1}^{\infty }{\frac{^{n}C_0+…….+{{,}^{n}}C_{n}}{{{,}^{n}}P_{n}}} $

$ =\frac{{{,}^{1}}C_0+{{,}^{1}}C_1}{{{,}^{1}}P_1}+\frac{{{,}^{2}}C_0+{{,}^{2}}C_1+{{,}^{2}}C_2}{{{,}^{2}}P_2}+\frac{^{3}C_0+{{,}^{3}}C_1+{{,}^{3}}C_2+{{,}^{3}}C_3}{{{,}^{3}}P_3} $ +… $ =\frac{2^{1}}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+……. $

$ ( 1+\frac{2}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+……. )-1 $

$ =e^{2}-1 $ .