Binomial Theorem And Its Simple Applications Question 201

Question: The value of $ ^{20}C_0+{{,}^{20}}C_1+{{,}^{20}}C_2+{{,}^{20}}C_3+{{,}^{20}}C_4 $ $ +{{,}^{20}}C_{12}+{{,}^{20}}C_{13}+{{,}^{20}}C_{14}+{{,}^{20}}C_{15} $ is

Options:

A) $ 2^{19}-\frac{( ^{20}C_{10}+{{,}^{20}}C_9 )}{2} $

B) $ 2^{19}-\frac{( ^{20}C_{10}+,2{{\times }^{20}}C_9 )}{2} $

C) $ 2^{19}-\frac{^{20}C_{10}}{2} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Given series is $ ^{20}C_0+{{,}^{20}}C_1+{{,}^{20}}C_2+…+{{,}^{28}}C_8 $

$ =\frac{(2^{20}-{{,}^{20}}C_{10})}{2}-{{,}^{20}}C_9 $

$ =2^{19}-\frac{({{,}^{20}}C_{10}+2\times {{,}^{20}}C_9)}{2} $