Binomial Theorem And Its Simple Applications Question 204

Question: If $ \sum\limits_{r=0}^{n}{\frac{r+2}{r+1}{{,}^{n}}C_{r}=\frac{2^{8}-1}{6}} $ , then n is

Options:

A) 8

B) 4

C) 6

D) 5

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ \sum\limits_{r=0}^{n}{\frac{r+2}{r+1}{{,}^{n}}C_{r}=\sum\limits_{r=0}^{n}{\frac{r+1+1}{r+1}{{,}^{n}}C_{r}}} $

$ =\sum\limits_{r=0}^{n}{^{n}C_{r}+\sum\limits_{r=0}^{n}{\frac{{{,}^{n}}C_{r}}{r+1}=2^{n}+\sum\limits_{r=0}^{n}{\frac{^{n+1}{C_{r+1}}}{n+1}}}} $

$ =2^{n}+\frac{1}{n+1}\sum\limits_{r+0}^{n}{^{n+1}{C_{r+1}}} $

$ =2^{n}+\frac{1}{n+1}({2^{n+1}}-1) $

$ =\frac{1}{n+1}[(n+1)2^{n}+{2^{n+1}}-1] $

$ =\frac{1}{n+1}[2^{n}(n+3)-1] $
Given, $ \frac{(n+3)2^{n}-1}{n+1}=\frac{2^{8}-1}{6}=\frac{(5+3){{.2}^{5}}-1}{5+1} $

$ \Rightarrow n=5 $