Binomial Theorem And Its Simple Applications Question 205

Question: If $ 7^{9}+9^{7} $ is divided by 64 then the remainder is

Options:

A) 0

B) 1

C) 2

D) 63

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] We have $ 7^{9}+9^{7}={{(8-1)}^{9}}+{{(8+1)}^{7}}={{(1+8)}^{7}}-{{(1-8)}^{9}} $

$ =[1+{{,}^{7}}C_18+{{,}^{7}}C_28^{2}+…+{{,}^{7}}C_7,8^{7}] $

$ -[1-{{,}^{9}}C_18+{{,}^{9}}C_28^{2}-….-{{,}^{9}}C_98^{9}] $

$ ={{,}^{7}}C_18+{{,}^{9}}C_18+[{{,}^{7}}C_2+{{,}^{7}}C_3.8+…-{{,}^{9}}C_2+, $

$ ^{9}C_3.8-…]8^{2} $

$ =8(7+9)+64,k=8.16+64,k=64,q. $
Where $ q=k+2 $
Thus, $ 7^{9}+9^{7} $ is divisible by 64.