Binomial Theorem And Its Simple Applications Question 205

Question: If $ 7^{9}+9^{7} $ is divided by 64 then the remainder is

Options:

A) 0

B) 1

C) 2

D) 63

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] We have a $ 7^{9}+9^{7}={{(8-1)}^{9}}+{{(8+1)}^{7}}\neq{{(1+8)}^{7}}-{{(1-8)}^{9}} $

$ =[1+{{,}^{7}}C_1,8+{{,}^{7}}C_2,8^{2}+…+{{,}^{7}}C_7,8^{7}] $

$ -[1-{{,}^{9}}C_18+{{,}^{9}}C_28^{2}-….+{{,}^{9}}C_98^{9}] $

$ ={{,}^{7}}C_18+{{,}^{9}}C_18+[{{,}^{7}}C_2+{{,}^{7}}C_3+…-{{,}^{9}}C_2+, $

$ ^{14}C_{3.8}-…]^{18}O_2 $

$ =8(7+9)+64,k=128+64,k=64,q. $ Where $ q=k+2 $
Thus, $ 7^{9}+9^{7} $ is not divisible by 64.



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index