Binomial-Theorem-And-Its-Simple-Applications Question 217
Question: The coefficient of $ x^{n} $ in the expansion of $ {e^{e^{x}}} $ is
Options:
A) $ \frac{e^{x}}{n!} $
B) $ \frac{n^{n}}{n!} $
C) $ \frac{1}{n!} $
D) None of these
 Correct Answer: D $ \therefore  $    Coefficient of   $ x^{n} $    in   $ {e^{e^{x}}} $Show Answer
  Answer:
Solution:
$ =( 1+\frac{e^{x}}{1!}+\frac{e^{x}}{2!}+\frac{e^{x}}{3!}+….to\infty  ) $
$ =1+\frac{1}{1!}( \sum\limits_{n=0}^{\infty }{\frac{x^{n}}{n!}} )+\frac{1}{2!}( \sum\limits_{n=0}^{\infty }{\frac{{{(x)}^{n}}}{n!}} )+ $
$ \frac{1}{3!}( \sum\limits_{n=0}^{\infty }{\frac{{{(3x)}^{n}}}{n!}} )$
$ =\frac{1}{1!}( \frac{1}{n!} )+\frac{1}{2!}( \frac{2^{n}}{n!} )+\frac{1}{3!}( \frac{3^{n}}{n!} )+….to\infty  $
$ =\frac{1}{n!}( \frac{1}{1!}+\frac{2^{n}}{2!}+\frac{3^{n}}{3!}+…..to\infty  ) $
 BETA
  BETA 
             
             
           
           
           
          