Binomial-Theorem-And-Its-Simple-Applications Question 223
Question: For a positive integer n, Let $ a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{(2^{n})-1}. $ Then
Options:
A) $ a(100)\le 100 $
B) $ a(100)>100 $
C) $ a(200)\le 100 $
D)   $ a(200)<100 $
 Correct Answer: A It can be proved with the help of mathematical induction that   $ \frac{n}{2}<a(n)\le n. $
$ \therefore \frac{200}{2}<a(200) $   Show Answer
  Answer:
Solution:
$ \Rightarrow a(200)>100 $    and   $ a(100)\le 100. $
 BETA
  BETA 
             
             
           
           
           
          