Binomial Theorem And Its Simple Applications Question 23

Question: If ’n’ is positive integer and three consecutive coefficient in the expansion of $ {{(1+x)}^{n}} $ are in the ratio 6 : 33 : 110, then n is equal to:

Options:

A) 9

B) 6

C) 12

D) 16

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let the consecutive coefficient of $ {{(1+x)}^{n}} $ are $ ^{n}{C_{r-1}},{{,}^{n}}C_{r},{{,}^{n}}{C_{r+1}} $
    From the given condition, $ ^{n}{C_{r-1}}:{{,}^{n}}C_{r}:{{,}^{n}}{C_{r+1}}=6 $ $ :33:110 $

Now $ ^{n}{C_{r-1}}:{{,}^{n}}C_{r}=6:33 $

$ \Rightarrow \frac{n!}{(r-1)!(n-r+1)!}\times \frac{r!(n-r)!}{n!}=\frac{6}{33} $

$ \Rightarrow \frac{r}{n-r+1}=\frac{2}{11}\Rightarrow 11r=2n-2r+2 $

$ \Rightarrow 2n-13r+2=0…(i) $
and $ ^{n}C_{r}:{{,}^{n}}{C_{r+1}}=33:110 $

$ \Rightarrow \frac{n!}{r!(n-r)!}\times \frac{(r+1)!(n-r-1)}{n!}=\frac{33}{110}=\frac{3}{10} $

$ \Rightarrow \frac{(r+1)}{n-r}=\frac{3}{10}\Rightarrow 3n-13r-10=0..(ii) $

Solving (i) & (ii), we get $ n=12 $