Binomial Theorem And Its Simple Applications Question 23

Question: If ’n’ is positive integer and three consecutive coefficient in the expansion of $ {{(1+x)}^{n}} $ are in the ratio 6 : 33 : 110, then n is equal to:

Options:

A) 9

B) 6

C) 12

D) 16

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Let the consecutive coefficient of $ {{(1+x)}^{n}} $ are $ ^{n}{C_{r-1}},{{,}^{n}}C_{r},{{,}^{n}}{C_{r+1}} $
    From the given condition, $ ^{n}{C_{r-1}}:{{,}^{n}}C_{r}:{{,}^{n}}{C_{r+1}}=6 $ $ :33:110 $

Now $ ^{n}{C_{r-1}}:{{,}^{n}}C_{r}=6:33 $

$ \Rightarrow \frac{n!}{(r-1)!(n-r+1)!}\times \frac{r!(n-r)!}{n!}=\frac{6}{33} $

$ \Rightarrow \frac{r}{n-r+1}=\frac{2}{11}\Rightarrow 11r=2n-2r+2 $

$ \Rightarrow 2n-13r+2=0…(i) $
and $ ^{n}C_{r}:{{,}^{n}}{C_{r+1}}=33:110 $

$ \Rightarrow \frac{n!}{r!(n-r)!}\times \frac{(r+1)!(n-r-1)}{n!}=\frac{33}{110}=\frac{3}{10} $

$ \Rightarrow \frac{(r+1)}{n-r}=\frac{3}{10}\Rightarrow 3n-13r-10=0..(ii) $

Solving (i) & (ii), we get $ n=12 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें