Binomial-Theorem-And-Its-Simple-Applications Question 232
Question: If $ n\in N $ and $ n>1, $ then
Options:
A) $ n!>{{( \frac{n+1}{2} )}^{n}} $
B) $ n!\ge {{( \frac{n+1}{2} )}^{n}} $
C) $ n!<{{( \frac{n+1}{2} )}^{n}} $
D) None of these
 Correct Answer: C $ \Rightarrow n!<{{( \frac{n+1}{2} )}^{n}} $ $ \Rightarrow n!<{{( \frac{n+1}{2} )}^{n}} $ $ \therefore  $    It is seen that   $ n!<{{( \frac{n+1}{2} )}^{n}} $Show Answer
  Answer:
Solution:
When   $ n=3, $    then   $ n!=6,{{( \frac{n+1}{2} )}^{n}}=8 $
When   $ n=4, $    then   $ n!=24. $
$ {{( \frac{n+1}{2} )}^{n}}=\frac{625}{16}\Rightarrow n!<{{( \frac{n+1}{2} )}^{n}} $
 BETA
  BETA 
             
             
           
           
           
          