Binomial-Theorem-And-Its-Simple-Applications Question 233

Question: For all $ n\in N,,41^{n}-14^{n} $ is a multiple of

Options:

A) 26

B) 27

C) 25

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Let P(n) be the statement given by $ P(n):41^{n}-14^{n} $ is a multiple of 27 For $ n=1, $
    i.e., $ P(1)=41^{1}-14^{1}=27=1\times 27, $
    which is a multiple of 27.

$ \therefore P(1) $ is true. Let $ P(k) $ be true, i.e, $ 41^{k}-14^{k}=27\lambda $ (i) For $ n=k+1, $
$ {41^{k+1}}-{14^{k+1}}=41^{k}41-14^{k}14 $
$ =(27\lambda +14^{k})41-14^{k}14 $ [using (i)] $ =(27\lambda \times 41)+(14^{k}\times 41)-(14^{k}\times 14) $
$ =(27\lambda \times 41)+14^{k}(41-14)=(27\lambda \times 41)+(14^{k}\times 27) $ $ =27(41\lambda +14^{k}), $
which is a multiple of 27. Therefore, P(K+1) is true when P (K) is true hence. From the principle of mathematical induction, the statement is true for all natural numbers n.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें