Binomial-Theorem-And-Its-Simple-Applications Question 238

Question: When $ 2^{301} $ is divided by 5, the least positive remainder is

Options:

A) 4

B) 8

C) 2

D) 6

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] $ 2^{4}\equiv 1(mod5)\Rightarrow {{(2^{4})}^{75}}\equiv {{(1)}^{75}}(mod5) $ i.e., $ 2^{300}\equiv 1(mod5)\Rightarrow 2^{300}\times 2\equiv (1.2)(mod5) $
    $ \Rightarrow 2^{301}\equiv 2(mod5) $
    $ \therefore $ Least positive remainder is 2.