Binomial Theorem And Its Simple Applications Question 26

Question: The coefficient of the term independent of x in the expansion of $ (1+x+2x^{3}){{( \frac{3}{2}x^{2}-\frac{1}{3x} )}^{9}} $ is

[DCE 1994]

Options:

A) $ \frac{1}{3} $

B) $ \frac{19}{54} $

C) $ \frac{17}{54} $

D) $ \frac{1}{4} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • The general term in the expansion of $ {{( \frac{3}{2}x^{2}-\frac{1}{3x} )}^{9}} $ is $ {T_{r+1}}={{,}^{9}}C_{r}{{( \frac{3}{2}x^{2} )}^{9-r}}{{( -\frac{1}{3x} )}^{r}} $

$ ={{,}^{9}}C_{r}{{( \frac{3}{2} )}^{9-r}}( -\frac{1}{3} ){x^{18-3r}} $ ……(i)

Now, the coefficient of the term independent of x in the expansion of $ (1+x+2x^{3}){{( \frac{3}{2}x^{2}-\frac{1}{3x} )}^{9}} $ ……(ii) = Sum of the coefficient of the terms $ x^{0},{x^{-1}} $ and $ {x^{-3}} $ in $ {{( \frac{3}{2}x^{2}-\frac{1}{3x} )}^{9}} $ . For $ x^{0} $ in (i) above, $ 18-3r=0\Rightarrow r=6 $ . For $ {x^{-1}} $ in (i) above, there exists no value of r and

Hence no such term exists.

For $ {x^{-3}} $ in (i), $ 18-3r=-3\Rightarrow r=7 $

$ \therefore $ For term independent of x, in (ii) the coefficient $ =1\times {{,}^{9}}C_6{{(-1)}^{6}}{{( \frac{3}{2} )}^{9-6}}{{( \frac{1}{3} )}^{6}}+2\times {{,}^{9}}C_7{{(-1)}^{7}}{{( \frac{3}{2} )}^{9-7}}{{( \frac{1}{3} )}^{7}} $

$ =\frac{9.8.7}{1.2.3}.\frac{3^{3}}{2^{3}}.\frac{1}{3^{6}}+2\frac{9.8}{1.2}(-1)\frac{3^{2}}{2^{2}}.\frac{1}{3^{7}} $

$ =\frac{7}{18}-\frac{2}{27}=\frac{17}{54} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें