Binomial Theorem And Its Simple Applications Question 28

Question: If $ x+y=1 $ , then $ \sum\limits_{r=0}^{n}{r^{n}C_{r}x^{r}{y^{n-r}}} $ equals

Options:

A) 1

B) n

C) nx

D) ny

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] We have, $ \sum\limits_{r=0}^{n}{r{{,}^{n}}C_{r}x^{r},{y^{n-r}}=\sum\limits_{r=0}^{n}{r\frac{n}{r}{{,}^{n-1}}{C_{r-1}}{x^{r-1}}x^{1}{y^{n-r}}}} $

$ =nx\sum\limits_{r=0}^{n}{^{n-1}{C_{r-1}}{x^{r-1}}{y^{(n-1)-(r-1)}}} $

$ =nx{{(x+y)}^{n-1}}=nx,[\because x+y=1] $