Binomial Theorem And Its Simple Applications Question 3

Question: For natural numbers $ m,nif{{(1-y)}^{m}}{{(1+y)}^{n}} $ $ =1+a_1y+a_2y^{2}+… $ and $ a_1=a_2=10 $ , then $ (m,n) $ is

Options:

A) (20, 45)

B) (35, 20)

C) (45, 35)

D) (35, 45)

Show Answer

Answer:

Correct Answer: D

Solution:

  • [d] $ {{(1-y)}^{m}}{{(1+y)}^{n}} $

$ =[1-{{,}^{m}}C_1y+{{,}^{m}}C_2y^{2}-….][1+{{,}^{n}}C_1y+{{,}^{n}}C_2y^{2}+….] $

$ =1+(n-m)y+{ \frac{m(m-1)}{2}+\frac{n(n-1)}{2}-mn }y^{2}+…. $

$ =1+(n-m)y+{ \frac{m(m-1)}{2}+\frac{n(n-1)}{2}-mn }y^{2}+…. $ By comparing coefficients with the given expression, we get

$ \therefore a_1=n-m=10 $ and $ a_2=\frac{m^{2}+n^{2}-m-n-2mn}{2}=10 $
So, $ n-m=10 $ and $ {{(m-n)}^{2}}-(m+n)=20 $

$ \Rightarrow m+n=80\therefore m=35,n=45 $