Binomial Theorem And Its Simple Applications Question 30

Question: The coefficient of $ x^{100} $ in the expansion of $ \sum\limits_{j=0}^{200}{{{(1+x)}^{j}}} $ is:

Options:

A) $ {{,}^{200}}C_{100} $

B) $ {{,}^{201}}C_{102} $

C) $ {{,}^{200}}C_{101} $

D) $ {{,}^{201}}C_{100} $

Show Answer

Answer:

Correct Answer: A

Solution:

  • [a] $ {{(1+x)}^{j}}=1+{{,}^{j}}C_1x+{{,}^{j}}C_2x^{2}+{{,}^{j}}C_3x^{3}+….. $

$ {{+}^{j}}C_{100}x^{100}+……+{{,}^{j}}C_{200}x^{200} $

$ \therefore $ Coefficient of $ x^{100} $ in the expansion of $ {{(1+x)}^{j}}={{,}^{j}}C_{100} $ Coefficient of $ x^{100} $ in the expansion of $ \sum\limits_{j=0}^{200}{{{(1+x)}^{j}}} $ will be equal to $ \sum\limits_{j=100}^{200}{^{j}C_{100}} $

$ ={{,}^{100}}C_{100}+{{,}^{101}}C_{100}+{{,}^{102}}C_{100}+….+{{,}^{200}}C_{100} $

$ ={{,}^{200}}C_{100} $