Binomial Theorem And Its Simple Applications Question 32

Question: If $ {{(1+x)}^{n}}=C_0+C_1x+C_2x^{2}+……….+C_{n}x^{2}, $ then $ C_0^{2}+C_1^{2}+C_2^{2}+C_3^{2}+……+C_n^{2} $ =

[MP PET 1985; Karnataka CET 1995; MNR 1999]

Options:

A) $ \frac{n!}{n!n!} $

B) $ \frac{(2n)!}{n!n!} $

C) $ \frac{(2n)!}{n!} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • $ {{(1+x)}^{n}}=C_0+C_1x+C_2x^{2}+…..+C_{n}x^{n} $ …..(i) and $ {{( 1+\frac{1}{x} )}^{n}}=C_0+C_1\frac{1}{x}+C_2{{( \frac{1}{x} )}^{2}}+…..+C_{n}{{( \frac{1}{x} )}^{n}} $ ….(ii)

If we multiply (i) and (ii), we get $ C_0^{2}+C_1^{2}+C_2^{2}+…..+C_n^{2} $ is the term independent of x and

Hence it is equal to the term independent of x in the product $ {{(1+x)}^{n}}{{( 1+\frac{1}{x} )}^{n}} $ or in $ \frac{1}{x^{n}}{{(1+x)}^{2n}} $ or term containing $ x^{n} $ in $ {{(1+x)}^{2n}} $ .

Clearly the coefficient of $ x^{n} $ in $ {{(1+x)}^{2n}} $ is $ {T_{n+1}} $ and equal to $ ^{2n}C_{n}=\frac{(2n)!}{n!n!} $ Trick :

Solving conversely. Put $ n=1,n=2,….. $ then we get $ S_1={{,}^{1}}C_0^{2}+{{,}^{1}}C_1^{2}=2 $ , $ S_2={{,}^{2}}C_0^{2}+{{,}^{2}}C_1^{2}+{{,}^{2}}C_2^{2}=1^{2}+2^{2}+1^{2}=6 $

Now check the options (a) Does not hold given condition, (b) (i) Put $ n=1 $ , then $ \frac{2!}{1!,1!}=2 $ (ii) Put $ n=2 $ , then $ \frac{4!}{2!,2!}=\frac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1}=6 $

Note: Students should remember this question as an identity.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें