Binomial Theorem And Its Simple Applications Question 35

Question: The interval in which x must lies so that the numerically greatest term in the expansion of $ {{(1-x)}^{21}} $ has the greatest coefficient is, (x > 0).

Options:

A) $ [ \frac{5}{6},\frac{6}{5} ] $

B) $ ( \frac{5}{6},\frac{6}{5} ) $

C) $ ( \frac{4}{5},\frac{5}{4} ) $

D) $ [ \frac{4}{5},\frac{5}{4} ] $

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] If n is odd, then numerically greatest coefficient in the expansion of $ {{(1-x)}^{n}} $ is $ \frac{^{n}{C_{n-1}}}{2}or\frac{^{n}{C_{n+1}}}{2} $
    Therefore in $ {{(1-x)}^{21}} $ , the numerically greatest coefficient is $ ^{21}C_{10} $ or $ ^{21}C_{11} $ . So, the numerically greatest term $ ={{,}^{21}}C_{11}x^{11},or{{,}^{21}}C_{10}x^{10} $
    So, $ | ^{21}C_{11}x^{11} |>| ^{21}C_{12}x^{12} | $ and $ |{{,}^{21}}C_{10}x^{10}|>{{|}^{21}}C_9.x^{9}| $

$ \Rightarrow \frac{21!}{10!11!}>\frac{21!}{9!12!}\times $ and $ \frac{21!}{11!10!}x>\frac{21!}{9!12!} $

$ (\because x>0) $

$ \Rightarrow x<\frac{6}{5} $ and $ x>\frac{5}{6}\Rightarrow x\in ( \frac{5}{6},\frac{6}{5} ) $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें