Binomial Theorem And Its Simple Applications Question 36

Question: If the middle term in the expansion of $ {{( \frac{1}{x}+x,\sin ,x )}^{10}} $ equals to $ 7\frac{7}{8} $ then x is equal to; $ (n\in I) $

Options:

A) $ 2n\pi \pm \frac{\pi }{6} $

B) $ n\pi +\frac{\pi }{6} $

C) $ n\pi +{{(-1)}^{n}}\frac{\pi }{6} $

D) $ n\pi +{{(-1)}^{n}}\frac{5\pi }{6} $

Show Answer

Answer:

Correct Answer: C

Solution:

  • [c] Middle term in the expansion is $ {{( \frac{10}{2}+1 )}^{th}} $ i.e., 6th tern. Thus $ T_6=7\frac{7}{8}\Rightarrow {{,}^{10}}C_5\frac{1}{x^{5}}.x^{5}{{\sin }^{5}}x=\frac{63}{8} $

$ \Rightarrow 252.{{\sin }^{5}}x=\frac{63}{8}\Rightarrow {{\sin }^{5}}x=\frac{1}{32} $

$ \Rightarrow \sin x=\frac{1}{2} $

$ \therefore x=n\pi +{{(-1)}^{n}}\frac{\pi }{6} $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें