Binomial Theorem And Its Simple Applications Question 37

Question: If the ratio of the 7th term from the beginning to the 7th term from the end in $ {{( \sqrt[3]{2}+\frac{1}{\sqrt[3]{3}} )}^{n}} $ is $ \frac{1}{6} $ them n equals to

Options:

A) 10

B) 9

C) 8

D) 12

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Given $ \frac{T_7}{{T_{n-7+2}}}=\frac{1}{6}\Rightarrow \frac{T_7}{{T_{n-s}}}=\frac{1}{6} $

$ \Rightarrow \frac{^{n}C_6{{( \sqrt[3]{2} )}^{n-6}}{{( \frac{1}{\sqrt[3]{3}} )}^{6}}}{^{n}{C_{n-6}}{{( \sqrt[3]{2} )}^{6}}{{( \frac{1}{\sqrt[3]{3}} )}^{n-6}}}=\frac{1}{6} $

$ \Rightarrow {2^{\frac{n-12}{3}}}.,{3^{\frac{n-12}{3}}}=\frac{1}{6}\Rightarrow {6^{\frac{n-12}{3}}}={6^{-1}} $

$ \therefore \frac{n-12}{3}=-1\Rightarrow n=9 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें