Binomial Theorem And Its Simple Applications Question 38

Question: If the fourth term in the expansion of $ {{( \sqrt{{x^{( \frac{1}{\log ,x+1} )}}}+{x^{1/12}} )}^{6}} $ is equal to 200 and $ x > 1 $ , then x is equal to $ (log=log_{10}) $

Options:

A) $ {10^{\sqrt{2}}} $

B) 10

C) $ 10^{4} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

  • [b] Given, $ T_4=200 $

$ \Rightarrow {{,}^{6}}C_3{{( \sqrt{{x^{( \frac{1}{\log x+1} )}}} )}^{3}}{{({x^{1/12}})}^{3}}=200 $

$ \Rightarrow 20.{x^{\frac{3}{2(log,x+1)}+\frac{1}{4}=}}200 $

$ \Rightarrow {x^{{ \frac{3}{2(log,x+1)}+\frac{1}{4} }}}=10 $

$ \Rightarrow ,\frac{3}{2(\log ,x+1)}+\frac{1}{4}=,{\log_{x}}10=\frac{1}{{\log_{10}}x} $

$ \Rightarrow \frac{3}{2(y+1)}+\frac{1}{4}=\frac{1}{y} $ where $ y={\log_{10}}x $

$ \Rightarrow y=-4 $ or $ y=1 $

$ \Rightarrow {\log_{10}}x=-4 $ or
$ \Rightarrow {\log_{10}}x=1 $

$ \Rightarrow x={10^{-4}} $ or $ 10\Rightarrow x=10(\because ,x>1) $